722 research outputs found

    Transition from quantum Hall to compressible states in the second Landau level: new light on the ν\nu=5/2 enigma

    Full text link
    Quantum Hall states at filling fraction ν\nu=5/2 are examined by numerical diagonalization. Spin-polarized and -unpolarized states of systems with N≤18N\le 18 electrons are studied, neglecting effects of Landau level mixing. We find that the ground state is spin polarized. It is incompressible and has a large overlap with paired states like the Pfaffian. For a given sample, the energy gap is about 11 times smaller than at ν\nu=1/3. Evidence is presented of phase transitions to compressible states, driven by the interaction strength at short distance. A reinterpretation of experiments is suggested.Comment: This paper has already appeared in PRL, but has not been on the we

    Object-oriented domain specific compilers for programming FPGAs

    No full text
    Published versio

    Localized quasiholes and the Majorana fermion in fractional quantum Hall state at nu=5/2 via direct diagonalization

    Full text link
    Using exact diagonalization in the spherical geometry, we investigate systems of localized quasiholes at nu=5/2 for interactions interpolating between the pure Coulomb and the three-body interaction for which the Moore-Read state is the exact ground state. We show that the charge e/4 quasihole can be easily localized by means of a delta-function pinning potential. Using a tuned smooth pinning potential, the quasihole radius can be limited to approximately three magnetic length units. For systems of two quasiholes, adiabatic continuity between the Moore-Read and the Coulomb limit holds for the ground state, while for four quasiholes, the lowest two energy states exhibit adiabatic continuity. This implies the existence of a Majorana fermion for pure Coulomb interaction. We also present preliminary results in the Coulomb limit for braiding in systems containing four quasiholes, with up to 14 electrons, diagonalizing in the full spin-polarized sector of the second Landau-level Hilbert space.Comment: 9 pages, 8 figure

    Monte Carlo simulation method for Laughlin-like states in a disk geometry

    Get PDF
    We discuss an alternative accurate Monte Carlo method to calculate the ground-state energy and related quantities for Laughlin states of the fractional quantum Hall effect in a disk geometry. This alternative approach allows us to obtain accurate bulk regime (thermodynamic limit) values for various quantities from Monte Carlo simulations with a small number of particles (much smaller than that needed with standard Monte Carlo approaches).Comment: 13 pages, 6 figures, 2 table

    Stability and effective masses of composite-fermions in the first and second Landau Level

    Full text link
    We propose a measure of the stability of composite fermions (CF's) at even-denominator Landau-level filling fractions. Assuming Landau-level mixing effects are not strong, we show that the CF liquid at ν=2+1/2\nu=2+1/2 in the n=1n=1 Landau level cannot exist and relate this to the absence of a hierarchy of incompressible states for filling fractions 2+1/3<ν<2+2/32+1/3 < \nu < 2+2/3. We find that a polarized CF liquid should exist at ν=2+1/4\nu=2+1/4. We also show that, for CF states, the variation with system size of the ground state energy of interacting electrons follows that for non-interacting particles in zero magnetic field. We use this to estimate the CF effective masses.Comment: 9 pages, Revtex, PSIZ-TP-940

    Spondylodiscitis as the first manifestation of Whipple's disease -a removal worker with chronic low back pain

    Get PDF
    Whipple's disease is a rare systemic infectious disease caused by the actinobacterium Tropheryma whipplei. Spondylodiscitis is an extremely rare manifestation of the infection and has previously been described in only three case reports. We present a 55-year-old man with persistent lumbago and signs of systemic illness, but without any gastrointestinal symptoms or arthralgia. The signal response in the lumbar spine in magnetic resonance tomography, both native and after intravenous gadolinium administration, was compatible with spondylodiscitis at the L4/L5 level. Culture of a specimen obtained by radiographically guided disc puncture and repeated blood cultures remained sterile. Tropheryma whipplei was detected by PCR amplification in material obtained from the disc specimen, from a biopsy of the terminal ileum and from the stool. The histology of duodenum, terminal ileum, colon and disc material was normal and, in particular, showed no PAS-positive inclusions in macrophages. Long-term antibiotic treatment with sulphamethoxazole and trimethoprim was successful, with marked improvement of the low back pain and normalisation of the systemic inflammatory signs. The possibility of Whipple's disease must be suspected in the case of a ‘culture-negative' spondylodiscitis even if there are no gastrointestinal symptoms and no arthralgia presen

    Interface steps in field effect devices

    Full text link
    The charge doped into a semiconductor in a field effect transistor (FET) is generally confined to the interface of the semiconductor. A planar step at the interface causes a potential drop due to the strong electric field of the FET, which in turn is screened by the doped carriers. We analyze the dipolar electronic structure of a single step in the Thomas-Fermi approximation and find that the transmission coefficient through the step is exponentially suppressed by the electric field and the induced carrier density as well as by the step height. In addition, the field enhancement at the step edge can facilitate the electric breakthrough of the insulating layer. We suggest that these two effects may lead to severe problems when engineering FET devices with very high doping. On the other hand steps can give rise to interesting physics in superconducting FETs by forming weak links and potentially creating atomic size Josephson junctions.Comment: 6 pages, 4 figures, submitted to J. Appl. Phy

    Excitation gaps in fractional quantum Hall states: An exact diagonalization study

    Full text link
    We compute energy gaps for spin-polarized fractional quantum Hall states in the lowest Landau level at filling fractions nu=1/3, 2/5,3/7 and 4/9 using exact diagonalization of systems with up to 16 particles and extrapolation to the infinite system-size limit. The gaps calculated for a pure Coulomb interaction and ignoring finite width effects, disorder and LL mixing agree with predictions of composite fermion theory provided the logarithmic corrections to the effective mass are included. This is in contrast with previous estimates, which, as we show, overestimated the gaps at nu=2/5 and 3/7 by around 15%. We also study the reduction of the gaps as a result of the non-zero width of the 2D layer. We show that these effects are accurately accounted for using either Gaussian or z*Gaussian' (zG) trial wavefunctions, which we show are significantly better variational wavefunctions than the Fang-Howard wavefunction. For quantum well parameters typical of heterostructure samples, we find gap reductions of around 20%. The experimental gaps, after accounting heuristically for disorder,are still around 40% smaller than the computed gaps. However, for the case of tetracene layers inmetal-insulator-semiconductor (MIS) devices we find that the measured activation gaps are close to those we compute. We discuss possible reasons why the difference between computed and measured activation gaps is larger in GaAs heterostructures than in MIS devices. Finally, we present new calculations using systems with up to 18 electrons of the gap at nu=5/2 including width corrections.Comment: 18 pages, 17 figure
    • …
    corecore